

Collecting data for SEAP measures

Velimir Šegon

North-West Croatia Regional Energy Agency

Centralized training for supporting structures

Zagreb, March 10, 2016

Overview of SEAP Reporting

- Action Reporting at least every 2 years
- Part I Overall Strategy
- ➤ Part III Sustainable Energy Action Plan
- Full Reporting at least every 4 years
- Part I Overall Strategy
- > Part II Emission Inventories (Monitoring Emission Inventory)
- Part III Sustainable Energy Action Plan

Collecting data for SEAP measures

- Methodology for data collection
 - Direct communication
 - ➤ Local authorities
 - > Energy suppliers
 - ➤ Public transport, service providers
 - The Environmental Protection and Energy Efficiency Fund (provides subsidies)
 - **→** Questionnaires
 - Reports
 - City/municipal budget
 - SMIV System for monitoring, measuring and verification of energy savings

Example of questionnaire

Number	1.		
Activity name	Installation of thermometers in buildings		
. // **	owned by the City		
Responsible body	Local authority		
Energy saving assessment	71,71 MWh of thermal energy		
(MWh)			
CO ₂ -emission-reduction	11,89 t CO ₂		
assessment (t CO ₂)			
Funding for measure	TOTAL: 1.300 EUR		
implementation	• City budget		
Short	Installation of 200 thermometers in rooms		
description/commentary	in buildings owned by the City		

Mandatory data

- Buildings sector:
 - > Municipal buildings
 - > Tertiary buildings
 - > Residential buildings
- Transport sector:
 - ➤ Municipal fleet
 - ➤ Public transport
 - ➤ Private and commercial transport
- Public lighting

Mandatory data

Each SEAP measure has to describe:

- Area of intervention
- Policy instrument
- Origin of the action
- Responsible body
- Implementation timeframe
- Implementation status and
- Implementation cost
- Energy savings (MWh)
- CO₂ reduction

Example

Edit Key Action	
Sector	MUNICIPAL BUILDINGS, EQUIPMENT/FACILITIES
Name	Thermostatic radiator sets installation in all mu
Area of intervention	Behavioural changes
Policy instrument	Awareness raising / training
Origin of the action	Local authority
Responsible body	City
Start time	2011
End time	2018
Status of implementation	Not started
Estimated implementation cost (€)	79500
Implementation cost spent so far (€)	0
Estimates in 2020	
Energy savings [MWh/a]	554
Renewable energy production [MWh/a]	0
CO₂ reduction [t/a]	111,3

Examples of indicators

Area of intervention	Indicator				
Municipal - Residential - Tertiary Buildings					
Energy audits	Floor area (m²)/potential of energy saving (kWh)				
Heating meters	Number of heating meters and size of the building (m ²)				
Behavioural changes	Number of participants in awareness raising campaigns				
Renewable energy for space heating	Energy consumption (kWh/year) (before and after the implementation of measures)				
Renewable energy for space heating and hot water	Surface area of solar thermal collectors installed (m²)				
Energy efficient lighting systems	Number and power (kW) of replaced lamps				

Examples of indicators

Area of intervention	Indicator				
Public Lighting					
Energy efficiency	Number and power (kW) of lamp replaced				
Municipal - Public - Private Transport					
Cleaner/efficient municipal vehicles	Number of vehicles replaced, energy consumption of old and new vehicles (liters/year)				
Municipal fleet - efficient driving behavior	vior Example: no. of courses, Number of participants				
Cleaner/efficient public transport	Energy consumption (old and new vehicles)				

Calculation example Energy-efficient indoor lighting

Ordinance of monitoring system, measuring and verification of energy savings (OB 71/15)

$$UFES = \frac{\frac{P_{init} \times n_{hinit} - P_{new} \times n_{hnew}}{1000}$$

$$UFES = \frac{P_{init} - P_{new} \times r}{1000} \times n_{h}$$

$$FES = \sum_{i=1}^{N_{linit}} UFES_{i}$$

	Installed power (kW)	Working hours (h)	Consumption (kWh)	Energy savings (kWh/year)
Before measures	64,974	1.200	77.968,80	55.909,20
After measures	18,383	1.200	22.059,60	

Calculation example Energy-efficient public lighting

$$UFES = \frac{\frac{P_{init} \times n_{hinit} - P_{new} \times n_{hnew}}{1000}}{UFES} = \frac{P_{init} - P_{new} \times r}{1000} \times n_{h}$$

$$FES = \sum_{i=1}^{N_{linit}} UFES_{i}$$

	Installed power (kW)	Working hours (h/year)	Number (lamps)	Energy savings (kWh/year)
Before measures	400,576	4.100	2.312	784.109
After measures	209,33	4.100		

Calculation example Renewable energy for space heating and hot water

$$UFES = \frac{USAVE}{\eta_{average}}$$

$$FES = \sum_{i=1}^{n} UFES_i \cdot A_i$$

	Number of systems	Average of thermal energy production kWh/m²	Average efficiency (%)	Surface area (m²)	Energy savings (kWh/year)
Solar collectors	25	530	0,80	140	92.750

Calculation example Household appliances with A***

 $UFES = AEC_{init} - AEC_{new}$ $FES = UFES \times N$

	Number	Energy consumption kWh/year_old	Energy consumption (kWh/year_new	Energy savings (kWh/year)
		appliances)	appliances)	, , ,
Refrigerator with freezer	7	240	175	455

Calculation example Energy audits

 $UFES = TSP \cdot DV$

Floor area (m²)	DV	Potential of energy savings (kWh/year)	Energy savings (kWh/year)
50.534,00	0,05	515.263,23	25.763,16

Calculation example Electric car

$$\textit{UFES} = \left(\textit{FC}_{init} \times \textit{f}_{\textit{C_init}} - \textit{FC}_{new} \times \textit{f}_{\textit{C_new}}\right) \times \textit{D}$$

$$FES = \sum_{i=1}^{N} UFES_{i}$$

Fuel	Fuel (new)	Fuel	Fuel	Number	Km	Energy
(old)		consumption (old)	consumption (new)			saving (kWh/year)
Gasoline	Electricity	7,1 l/100 km	10 kWh/100 km	2	12.000	13.890,24

Conclusion and recommendations

- Data collection is time consuming and demanding
- Maximum engagement of local stakeholders is needed
- Recommendations
 - > Determine responsible person in local authority
 - Continuous monitoring of energy indicators for each subsector
 - ➤ Regular reports on implemented energy measures (according to national legislation)
 - Education seminars, webinars, workshops

Thank you for your attention!

vsegon@regea.org

www.regea.org